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Analogue of Black Strings in Yang± Mills Gauge
Theory
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Received August 29, 1997

The classical Yang±Mills equations are analyzed within the geometrical
framework of an effective gravity theory. Exact analytical solutions are derived
for the cylindrically symmetric configurations of the coupled gauge and isoscalar
fields. It turns out that there is an infinite family of solutions parametrized by
two real parameters, one of which determines the asymptotic behavior of fields
near the symmetry axis and in infinity, while the second locates the singularity.
These configurations have a simple pole at a finite value of the radial coordinate,
and physically they represent ª thick stringº -like objects which possess the
confinement properties. It is demonstrated that the particles with gauge charge
cannot move classically and quantum mechanically out of the interior region. Such
objects are thus direct analogues of the ª black stringº gravitational configurations
reported recently in the literature.

1. INTRODUCTION

Interest in classical solutions of Yang±Mills gauge theory has been

recently revived on the basis of correspondences between gauge models with

internal symmetry group and gauge theories of gravity. There is a wide variety

of such maps (Johnson, 1993; Freedman et al., 1993; Freedman and Khuri,

1994; Lunev, 1992, 1993a, c, 1994; Bauer et al., 1994; Bauer and Freedman,

1995; Mielke et al., 1994; Haagenson and Johnson, 1995; Radovanovic and
SÏ ijacÏ ki, 1995), which permit the reformulation of Yang±Mills theory in terms

of an ª effectiveº gravitational Einstein or, in general, Einstein±Cartan theory.

In particular, the use of such reformulations enabled a number of authors

(Lunev, 1993b; Singleton, 1995) to find spherically symmetric solutions for

the Yang±Mills equations which are analogous to black hole gravitational
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configurations. Quite recently the study of cylindrically symmetric gravita-

tional fields has resulted in ª black stringº solutions (Lemos, 1994; Lemos

and Zanchin, 1996) which possess a similar property providing confinement

of a classical particle to the inner region under the cylindrical horizon. In

the present paper we use the mapping technique to derive the analogous

exact cylindrically symmetric solutions in Yang±Mills gauge theory.

To recall, in previous studies of the classical Yang±Mills theory attention

was paid mainly to the regular solutions with finite energy or/and action [a

good review of earlier work is given in Actor (1979)]. However it was proven

(Swank et al., 1975) that finite-energy gauge field configurations cannot

form bound states with fermion particles and thus do not possess confining

properties. It was proposed in Swank et al., (1975) that infinite-energy config-

urations should be analyzed instead. The new spherically symmetric solutions

(Lunev, 1993b; Singleton, 1995) are all singular and have infinite energy,

which indeed yields confining properties analogous to that of a black hole.

[As a matter of fact, these solutions are not really new; both Lunev (1993b)

and Singleton (1995) rediscovered the results of two papers of Protogenov

(1977, 1979); however their discussion of classical confinement is a new

development; see also Sington and Yoshida (1995).]

There was already some interest in more general symmetries; in particu-

lar, Witten (1979) was the first to establish a direct correspondence between

axially symmetric Einstein solutions and static, axially symmetric, self-dual

Yang±Mills gauge fields. A more recent, partly overlapping discussion is

presented in Singleton (1996). A cylindrically symmetric case was analyzed

in (Mahajan and Valanju, 1987a, b), which was treated as a leading approxima-

tion for the toroidal localized configurations.

In the present paper we show that singular solutions with confining

properties exist not only for spherical symmetry (Lunev, 1992, 1993a, c,

1994; Singleton, 1995), but also for a cylindrically symmetric case. The

general interest in this case is motivated by studies of classical stringlike

configurations, in particular in cosmology. When, however, periodic condi-

tions are imposed on the symmetry axis coordinate, one finds approximate

toroidal solutions. Compact toroidal configurations of gluonic and quark

matter have attracted much attention (see, e.g., Mahajon and Valanju (1987a,

b) and Robson (1980) and references therein). It is also worthwhile to mention

that the study of the cylindrically symmetric case is often useful as a prelimi-

nary step in treating a more general axial symmetric problem. We use the

mapping from SU(2) Yang±Mills theory into effective Einstein±Cartan gravity

for the formulation of the general problem and for the analysis of the properties

of the solutions obtained. An infinite family of solutions is discovered which

are labeled by two real parameters.
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2. YANG± MILLS THEORY MAPPED INTO A GAUGE
GRAVITY MODEL

Let us consider SU(2) gauge theory on flat Minkowski space-time M.

It will be convenient to use the coordinate-free formulation in terms of the

exterior form language. As in Singleton (1995), we will study the model of
coupled SU(2) gauge field and a triplet of massless Higgs scalar fields f a,

i.e., what is called the Yang±Mills±Higgs theory in the Prasad±Sommerfield

limit. The Lagrangian is

L YMH 5 2
1

2
(F a Ù *Fa 1 D f a Ù *D f a) (2.1)

where * denotes the four-dimensional Hodge dual.

In order to describe the mapping from the internal gauge theory into an

ª effectiveº gravity form, we need to make a formal (1 1 3) decomposition.
Hence we will distinguish the global time coordinate x 0 5 t from the rest

of the coordinates x i, i 5 1, 2, 3, which parametrize the flat Euclidean three-

dimensional space M (so that M 5 R 3 M ). The (pseudo)-Riemannian

structure is introduced on M by the Minkowski metric g with the Lorentzian

signature ( 2 , 1 , 1 , 1 ), and in accordance with the product structure we

write the line element as

ds2 5 2 dt ^ dt 1 ds2 5 2 dt ^ dt 1 gij dx i ^ dx j (2.2)

with the positive-definite 3-metric ds2 5 gij dx i ^ dx j. The latter is flat: a

coordinate transformation exists from x i to x 8i in which g 8ij 5 d ij. Hereafter

the underline denotes the three-dimensional quantities and structures on M.
Developing the (1 1 3)-decomposi tion (see, e.g., Mielke, 1992) of the

SU(2) Yang±Mills theory defined on M, one writes the potential 1-form and

the field strength 2-form as

A a 5 dtAa
0 1 A a, F a 5 dt Ù E a 1 B a (2.3)

The `electric’ piece of the Yang±Mills field strength reads

E a 5 A a 2 DAa
0 5 D tA

a 2 dAa
0 (2.4)

with A 5 - 0 A as the time derivative, and the covariant derivatives defined by

D t j a : 5 j
Ç
a 1 e a

bcA
b
0 j c, D j a : 5 d j a 1 e a

bc A b j c (2.5)

The `magnetic’ piece of the field strength is

B a : 5 F a 5 dAa 1
1

2
e a

bc A b Ù A c (2.6)
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The Lagrangian (2.1) is decomposed as

LYMH 5 1±2 dt Ù ( 2 Ba Ù *Ba 1 Ea Ù *Ea 1 Dt f a Ù *Dt f a

2 D f a Ù *D f a) (2.7)

where * stands for the 3-dimensional Hodge dual, defined by the flat 3-

metric g.

We now transform the Yang±Mills theory into the form of an effective

gauge gravity model. There are several ways to do this (Johnson, 1993;

Freedman et al., 1993; Freedman and Khuri, 1994; Lunev, 1992, 1993a, c,
1994, Bauer et al., 1994, Bayer and Freedman, 1995. Mielke et al., 1994,

Haagensen and Johnson, 1995), but here we consider the mapping due to

Lunev (1992, 1993a±c, 1994), which is defined when a fixed background

(e.g., the Minkowskian) geometry is present. As a first step, we rewrite

Yang±Mills theory in first-order form. This is straightforward after the intro-

duction of two auxiliary fields, the 1-form Q a and the 2-form p a (both
transform covariantly under the action of the gauge group):

LYMH 5 dt Ù 1 2 Q a Ù B a 1
1

2
Q a Ù * Q a

1 p a Ù E a 2
1

2
p a Ù * p a 1 Dt f a Ù *D t f a 2 D f a Ù *D f a 2 (2.8)

The basic mapping is formulated as follows: for every three-dimensional

Yang±Mills configuration (A a, Q a) we define the three-dimensional Riemann±
Cartan effective geometry by

G ab 5 A c e ab
c , q a 5 Q a (2.9)

Then the magnetic strength (2.6) is mapped into the three-dimensional curva-

ture two-form Rab and first term in the Lagrangian (2.8) is just the standard
Hilbert±Einstein gravitational term,

2 Q a Ù B a 5 2
1

2
h ab Ù R ab

while the second term represents a sort of a generalized ª cosmological con-

stant.º Except for ( q a, G ab) all the rest of the variables (the Yang±Mills field
time component A a

0, the variable p a, and f a) then should be treated as the

effective matter described by the second line in (2.8). Let us derive the

effective ª gravitationalº field equations. Independent variation of (2.8) with

respect to q a and G ab yields, respectively,
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R ab 5 e abc * q c (2.10)

T a 5 2 Dt p a 2 e a
bc f b*D f c (2.11)

where T a is the effective torsion two-form. Notice the absence of a ª matter

sourceº in the effective Einstein equation (2.10). As one notices [correcting

the statements made in Lunev (1992, 1993a±c, 1994)], in the general case

the effective spatial geometry is the Riemann±Cartan one: torsion (2.11) is
nontrivial for nonstatic configurations, and both A0 and Higgs scalars contrib-

ute to it. Variation of (2.8) with respect to the ª matterº fields yields,

respectively,

D p a 5 2 e a
bc f b*D t f c, E a 5 * p a (2.12)

while the scalar multiplet f a satisfies the generalized Klein±Gordon field

equation,

Dt *D t f a 2 D*D f a 5 0 (2.13)

3. CYLINDRICALLY SYMMETRIC CONFIGURATIONS

We are going to discuss the exact solutions with cylindrical symmetry.

Hence we cover the 3-space M by the cylindrical coordinate system, xi 5
{ r , u , z}, with the background 3-metric in its standard form

ds2 5 d r 2 1 r 2 d u 2 1 dz2 (3.1)

We look for the static, cylindrically symmetric solutions of the Yang±

Mills equations. In the effective gravity theory (2.11)±(2.10) we should search

for the effective frame and connection. The most general cylindrically sym-
metric ansatz reads

q a 5 1 A ( r )d r
B ( r )d u
C ( r )dz 2 , G b

a 5 1 0 Ud u V r 2 1dz

2 Ud u 0 0

2 V r 2 1dz 0 0 2 (3.2)

Hereafter we use the self-evident matrix notation. The functions U 5 U( r ),

V 5 V ( r ), A, B, and C determine the gauge field configuration. Extra r
factors are introduced in (3.2) for later convenience. It seems worthwhile to
mention that in the effective gravity framework it is quite straightforward to

derive the symmetric ansatz for any field variable. In particular, (3.2) is

suggested naturally by the Cartan structure equations. The torsion and curva-

ture 2-forms for the Riemann±Cartan gauge fields (3.2) are as follows:
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T a 5 1 0

(B8 1 AU )d r Ù d u
(C 8 1 AV r 2 1)d r Ù dz 2 (3.3)

R b
a 5 1 0 U 8d r Ù d u (V r 2 1)8d r Ù dz

2 U 8d r Ù d u 0 2 UV r 2 1d u Ù dz

2 (V r 2 1)8d r Ù dz UV r 2 1d u Ù dz 0 2 (3.4)

For the static case equations (2.11)±(2.13) can be rewritten, excluding

p a, as

T a 5 e a
bc Ab

0 *(DAc
0) 2 e a

bc f b *(D f c) (3.5)

D *DAa
0 5 0 (3.6)

D *D f a 5 0 (3.7)

respectively. The cylindrically symmetric ansatz for Aa
0 and f a reads

A a
0 5

1

r 1 W ( r )

0

0 2 , f a 5
1

r 1 H ( r )

0

0 2 (3.8)

The Hodge duality operation defined by the flat metric (3.1) can be

summarized in matrix notation as

* 1 d r
d u
dz 2 5 1 r d u Ù dz

r 2 1dz Ù d r
r d r Ù d u 2 (3.9)

Substituting (3.8), (3.2), and (3.9) into (3.6) and (3.7), we find

r 2 W 9 2 r W 8 5 W (U 2 1 V 2 2 1) (3.10)

r 2H 9 2 r H 8 5 H (U 2 1 V 2 2 1) (3.11)

Using (3.3), (3.8), and (3.9), one transforms the torsion (ª Cartanº ) equa-

tion (3.5) and the Einstein equation (2.10) to

r 2 U 9 2 r U 8 5 U (V 2 1 H 2 2 W 2) (3.12)

r 2 V 9 2 r V 8 5 V (U 2 1 H 2 2 W 2 2 1) (3.13)

These equations (3.10)±(3.13) form a closed system of second-order nonlinear

equations for the functions U, V, W, H. The effective metric coefficients A,

B, C are constructed from them via A 5 UV r 2 2, B 5 2 r (V / r )8, C 5 2 U 8/ r .



Analogue of Black Strings in Yang± Mills Gauge Theory 1461

4. EXACT SOLUTIONS WITH CONFINING PROPERTIES

Noticing that the general structure of the system (3.10)±(3.13) is close

to that of the spherically symmetric problem in the Prasad±Sommerfield

(1975) limit we look for the general nondegenerate solution for V, H, W in
the form

V 5 K ( r ), H 5 K ( r ) cosh g , W 5 K ( r ) sinh g (4.1)

where g is an arbitrary constant. Using (4.1), one reduces (3.10)±(3.13) to

the following system of coupled equations for two unknown functions K, U:

r 2K9 2 r K 8 5 K (K 2 1 U 2 2 1) (4.2)

r 2U9 2 r U 8 5 2UK 2 (4.3)

One immediately notices some resemblance of these equations to the spheri-

cally symmetric equations in the Prasad±Sommerfeld limit. However, the

second terms on the l.h.s. produce an essential difference. In particular, the

analysis of the power series expansions at zero and at infinity shows that the
system (4.2)±(4.3) does not admit analytical solutions in which the function

K goes to 6 1 at zero or at infinity. [To check our conclusions, we have used

the REDUCE-based (Stauffer et al., 1993) computer algebra system GRG in

calculations (Zhytnikov et al., 1992; Zhytnikov, 1991).

Integration of (4.2)±(4.3) is simplified greatly when one notices that
this system is a consequence of the first-order system,

r K 8 2 K 5 e KU (4.4)

r U 8 5 e K 2 (4.5)

where e 2 5 1. As one can see, (4.4)±(4.5) possesses a first integral

( e U 1 1)2 2 K 2 5 C

with the help of which the final integration of (4.5) or (4.4) is straightforward.

We have three cases, depending on the value of the constant C.

For C 5 0 we find

K 5
e 1

log( r / r 0)
, U 5 e 2 1 1 1

1

log( r / r 0) 2 (4.6)

where e 2
1,2 5 1, and r 0 is an integration constant.

For negative constant C 5 2 n 2 we get
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K(n) 5
e 1n

cos[n log ( r / r 0)]
, U(n) 5 e 2 5 2 1 1 n tan F n log 1 r

r 0 2 G 6
(4.7)

while for positive constant C 5 n 2 one finds

K(n) 5
2 « 1n( r / r 0)

n

( r / r 0)
2n 2 1

, 5 U(n) 5 « 2 1 1 1 n 1
2n

( r / r 0)
2n 2 1 2 (4.8)

Below for definiteness we will consider the plus signs e 1 5 e 2 5 1 1 in

these solutions.

The classical solutions (4.7) and (4.8) are parametrized by the two real
constants: n and r 0. In fact, also any complex n is formally admissible and

a complex integration constant r 0, but then the SU(2) gauge fields are also

complex and their physical interpretation is unclear. Solutions (4.8) with

noninteger n are not analytical at zero and infinity. Negative n does not give

anything new; it is easy to see that

K( 2 n) 5 K(n), U( 2 n) 5 U(n)

Trivial n 5 0 gives also a solution, which, however, does not reduce to (4.6).
All the solutions are singular. The fields (4.7) have an infinite number

of singular points, while the configurations (4.6) have logarithmic and (4.8)

a simple pole behavior at a point r 5 r 0,

K(n) | r ® r 0 5 U(n) | r ® r 0 5
r 0

r 2 r 0

(4.9)

This is most easily seen for integer n; then one can use the explicit formula

(r2n 2 1) 5 (r 2 1)(r2n 2 1 1 r2n 2 2 1 ¼ 1 r 1 1) (with r 5 r / r 0).But (4.9)

is valid also for arbitrary noninteger n. This is the same singularity which is
typical for spherically symmetric solutions with confining properties (Lunev

1993b; Singleton, 1995). However, unlike the spherical case, the Yang±Mills

potentials and scalar fields (3.2), (3.8) are regular at the origin r 5 0. The

rest of the paper is devoted to the discussion of the solutions (4.8).

Without loss of generality, we will put r 0 5 1 in our subsequent study
of the solution properties. Let us analyze the particular solution with n 5 1

in greater detail.

The effective ª gravitationalº fields, which completely characterize the

Yang±Mills field configuration, are calculated straightforwardly. When n 5
1 we find for the torsion and curvature the following expressions, respectively,
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T a 5
2 8 r

( r 2 2 1)3 1 0
d r Ù d u
d r Ù dz 2 (4.10)

R b
a 5

2 4 r
( r 2 2 1)2 1 0 d r Ù d u d r Ù dz

2 d r Ù d u 0 r d u Ù dz
2 d r Ù dz 2 r d u Ù dz 0 2 (4.11)

Recall that the Riemann±Cartan curvature (4.11) is in fact the magnetic part

of the Yang±Mills field strength.

The effective three-metric components A, B, C are also easily calculated
to give for the line element

ds2
eff 5

16

( r 2 2 1)4 ( r 2 d r 2 1 r 4 d u 2 1 dz2) (4.12)

As we see, all the fields are zero at the symmetry axis, become infinite
at a distance r 5 1, and then rapidly fall off to zero at large distances from

the axis. Solutions with n . 1 have the same general properties, only they

decrease more quickly when r ® 0 and when r ® ` . The physical interpreta-

tion of such a Yang±Mills configuration is clear: A region of space inside

the tube of the radius r 5 1 is separated by an infinite potential barrier from
the outside space, providing a classical confinement of any matter with gauge

charges in a stringlike structure. The absence of the gauge field at r 5 0 is

a classical counterpart of asymptotic freedom, since no force is acting on the

gauge charges on the axis. One thus may call the family (4.8) confining

string solutions. [Similar solutions in the Euclidean self-dual Yang±Mills

theory were previously discussed by Saclioglu (1981, 1984), without, how-
ever, a study of confining properties.]

Due to the simple pole singularity (4.9) the total energy of all the

solutions diverges, and it seems necessary to introduce a proper cutoff as

with the formally infinite-energy Coulomb solution, following the suggestion

of Singleton (1995). It should be stressed, however, that the confining property

of the classical solutions (4.8) is a direct consequence of their singularity.

5. QUANTUM PARTICLE CONFINEMENT

Analogously to the spherically symmetric case (Lunev, 1993; Singleton
and Yoshida, 1995), one can demonstrate that quantum particles with gauge

charge are indeed confined inside the cylindrical domain near the symmetry

axis. Let us consider the isospin-1/2 scalar particle in an external gauge field

(4.8). For simplicity we will choose g 5 0 in (4.1) (thus eliminating the time
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component of the gauge field), and n 5 1, and set the integration constant

r 0 5 1 (for other values of n and r 0 the results are qualitatively the same).

The dynamics of a 2-component scalar field C A, A 5 1, 2, with mass
M in the external gauge field is described by the Klein±Gordon equation

C È A 2 *D *D C A 1 M 2 C A 5 0 (5.1)

where the covariant derivative is

D A
B : 5 d d A

B 2
i

2
A a ( s a)

A
B

and s a are 2 3 2 Pauli matrices.

Substituting the n 5 1 (4.8) gauge field configuration into (5.1), and

looking for the finite-energy solutions

C A 5 e 2 itE c A( r , u , z)

we find

2 1 1r -
- r 1 r - c A

- r 2 1
1

r 2

- 2 c A

- u 2 1
- 2 c A

- z 2 2
1 1 M 2 2 E 2 1

r 2 1 1

( r 2 2 1)2 2
2

( r 2 2 1)
L 2 c A 5 0 (5.2)

where we denote a linear differential operator

L : 5 2 i 1 s 2 -
- z

2 s 3 -
- u 2 (5.3)

It is easy to see that the operators

2 i
-
- u

, 2 i
-
- z

, L

commute with each other and with the differential operator in (5.2). Hence
one can look for the solution which is a common eigenstate of all the operators,

and separate variables as

c A 5
1

! r
w ml l ( r )e imz1 il u c A

l (5.4)

where constants m and l are the eigenvalues of 2 i - z and 2 i - u , respectively,
and c A

l is the eigenfunction

L c A
l 5 l c A

l

with the eigenvalues l 5 6 ! m 2 1 l 2.
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Substituting (5.4) into (5.2), we find for the radial function the one-

dimensional stationary SchroÈ dinger equation

1 2 d 2

d r 2 1 V ( r ) 2 w ml l 5 m 2 w ml l (5.5)

with the potential

V ( r ) 5
r 2 1 1

( r 2 2 1)2 2
2 l

r 2 2 1
2

l 2 1 1/4

r 2 (5.6)

and eigenvalue

m 2 5 E 2 2 M 2 1 m 2

The infinite potential barrier at r 5 1 with the leading term V , 2/( r 2 1)2

is known to be completely impenetrable (Dittrich and Exner 1985) [the exact

form of the eigenfunctions in (5.5) is not important]. Thus all quantum
particles with a gauge charge cannot move out of the ª thick stringº region

0 # r # 1, providing a picture of confinement. The same conclusion is valid

also for the Dirac spinor particles.

It seems worthwhile to mention that the result obtained is nontrivial

because not every singular potential (infinitely high barrier) is necessarily

impenetrable. In particular, potentials a/( r 2 1)2 are not confining for a # 1;
see Dittrich and Exner (1985).

6. DISCUSSION AND CONCLUSION

In this paper we obtained a family of new exact cylindrically symmetric

solutions for the SU(2) gauge Yang±Mills theory. Like the earlier reported

spherically symmetric solutions, these are also singular and can thus provide

a mechanism for classical confinement. This is another demonstration of the

fruitfulness of deriving analogies and constructing direct mappings between

the gauge theories of internal symmetry groups and gravity theory.
It seems necessary to mention certain problems and prospects for the

results obtained. First of all, QCD works not with SU(2) group, but with

SU(3). Straightforward analysis shows that there exist, a generalization of

the above results to the SU(3) case, which arise from the embedding of SU(2)

into SU(3). However, the geometrical meaning of the mapping between the

gauge model and gravity is at the moment unclear, although one can point
to the work of Bauer et al. (1994), Bauer and Freedman (1995) and Lunev

(1996) where attempts were made to prove the existence of the reasonable

generalization of the mapping between SU(N ), N $ 3, gauge theory and

gravitation, thus demonstrating that the coincidence of the SU(2) group dimen-
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sion with the number of spatial coordinates is accidental and plays no decisive

role. The arising effective spatial geometry is necessarily non-Riemannian

in this case. Another point which deserves special attention is the physical
interpretation of the infinite energy of the confining solutions. As we already

mentioned, finite-energy configurations cannot provide the binding of gauge

charges. However, a regularization similar to the one which is applied to the

(originally infinite-energy) meron solutions might be necessary in our case.

Work is in progress in this direction.

A possible physical importance of the new solutions would be a develop-
ment of the toroidal bag constituent model for the hadrons. Recently an

analogous spherical bag model based on classical singular solutions was

discussed in Singleton and Yoshida (1995). The toroidal glueballs were ana-

lyzed, e.g., in Robinson (1980), and later Mahajan and Valanju (1987a, b)

made an attempt to reformulate this model within the cylindrically symmetric

approximation to the Yang±Mills toroidal configurations. Such an approxima-
tion arises naturally from an exact cylindrical solutions by imposing a period-

icity condition on the z coordinate. Some remarks are in order about Mahajan

and Valanju (1987a, b). Using an ansatz similar to but somewhat different

from (3.2) for the cylindrically symmetric Yang±Mills field, they failed to

describe an exact classical solution. They, however, noticed the possibility
of a simple pole singularity of the type (4.9) and tried to avoid it by assuming

that the integration constant analogous to r 0 is complex, at the same time

speculating that a smooth matching of such a solution with the real analytical

power series solutions at zero and infinity exists. As is clearly shown in the

present paper, no such matching exists and the only possibility to avoid the

singularity for real r is to make a solution complex on all the r axis. Such
a complex solution, although formally admissible, most probably will be

unphysical. Our results thus provide corrections and generalization of the

Mahajan and Valanju (1987a, b).

It certainly may turn out that the true explanation of the QCD confine-

ment involves purely quantum arguments which are unrelated to the specula-

tive, to an extent, calculations based on the new spherically symmetric (Lunev,
1993b; Singleton, 1995) and cylindrically symmetric (4.8) Yang±Mills solu-

tions. Nevertheless, it seems worthwhile to notice once again the power and

flexibility of the classical Yang±Mills theory, which provides alternative

geometrical mechanisms for understanding, maybe at least partly, such in-

triguing problems as confinement.
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